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A b s t r a c t  

A general purpose computational paradigm using neural networks is shown to be capable of 
efficiently predicting properties of polymeric compounds based on the structure and composition 
of the monomerie repeat unit. Results are discussed for the prediction of the heat capacity, glass 
transition temperature, melting temperature, change in the heat capacity at the glass transition 
temperature, degradation temperature, tensile strength and modulus, ultimate elongation, and 
compressive strength for 11 different families of polymers. The accuracies of the predictions 
range from 1-13% average absolute error. The worst results were obtained for the mechanical 
properties (tensile strength and modulus: 13%, 7% elongation: 12%, and compressive strength: 
8%) and the best results for the thermal properties (heat capacity, glass transition temperature, 
and melting point: <4%). A simple modification to the overall method is devised to better take 
into account the fact that the mechanical properties are experimentally determined with a fairly 
large range (due to variability in measurement procedures and especially the sample). This modi- 
fication treats the bounds on the range for the mechanical properties as complex numbers (com- 
plex, modular neural networks) and leads to more rapid optimization with a smaller average 
error (reduced by 3 %). 

Keywords: complex backpropagation, computational neural networks, molecular structure, 
physical and mechanical properties, polymeric materials, quantitative structure- 
property relationships, statistieal regression, unsupervised learning 

Introduction 

Professor Wunderlich continues to be at the forefront of polymer science re- 
search [1-4]. His intense pursuit of accurately defining and quantifying thermal 
properties of polymeric materials has set the standard for thermal analysis [5]. 
In addition, he has been active in using computational methods [6] to augment 
experimental research, an approach which has provided a substantial boost to- 
ward the general understanding of structure-property relationships and the fun- 
damental importance of the microscopic dynamics to the observed macroscopic 
structure and properties. 
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Professor Wunderlich would be among the first to agree that polymer sci- 
ence is of fundamental significance to science and technology. Polymers and 
polymer processing cuts across almost every sector of industry. From micro- 
electronics to composites, from pharmaceuticals to petrofuels, from aerospace 
alloys to smart materials, our industrial base is built on our ability to invent and 
craft new materials. However, up to now, materials design and processing have 
been to a large extent empirical sciences: we are still unable to design new al- 
loys and polymers to meet application specific requirements. Obviously, the 
ability to rapidly screen possible designs for specific applications, would pro- 
vide a distinct advantage, potentially leading to significant advances in quantity 
and quality of materials products. 

In this paper we present results obtained by using computational neural net- 
works as tools for building reliable capabilities (an atomistic approach) in 
predicting materials properties. In the next section, the three types of neural 
networks used in this study are described followed by a discussion of the results 
in Sec. Ill and the conclusions in Sec. IV. 

Computational scheme 

Recently there have been a number of advances in the area of quantitative 
structure-property relationships (QSPR) that provide computational avenues ca- 
pable of estimating certain properties based on fundamental structure [7-9]. 
The majority of these developments and studies are based on either fitting via 
standard statistical techniques [ 10] a set of descriptors based on group contribu- 
tions or graph theory to known experimental data. However, the rather sparse 
set of data as well as the fact that there is significant variability in how data is 
reported and measured, can significantly degrade the ability to determine ade- 
quate parameters for the regression equations. The apparent ability of 
computational neural networks to adequateiy handle multimodal, noisy, and 
even sparse data [11] is perhaps essential toward improving predictive capabili- 
ties of standard QSPR methods [12]. 

Since the details of computational neural networks may be relatively new to 
the thermal analysis community, we briefly discuss fundamental concepts for 
the paradigms that we have employed in this study. 

A. Computational neural networks 

Computational neural networks (CNNs) are model-free estimators that have 
exceptional ability for performing multidimensional, nonlinear vector map- 
pings. In general, CNNs have several essential constructs that define their 
operation: nodes (simple processing units), transfer functions (generally non- 
linear and bounded functions), connection weights, and a learning algorithm. 
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One possible arrangement of the nodes is an architecture that describes a mul- 
tilayer feedforward network: a set of nodes placed into two or more layers. An 
example of the basic architecture for a multilayer feedforward CNN is shown in 
Fig. 1. There is an input layer and an output layer, each consisting of at least 
one node. The nodes in the input layer do not perform any actual processing but 
serve only to distribute the input to the next layer. There are usually one or 
more hidden layers (layers of nodes between the input and output). The term 
feedforward means that the inputs to the nodes in each layer comes exclusively 
from the outputs of nodes in the previous layer, and the outputs from these 
nodes pass to nodes in the following layer. Each node in the network has a num- 
ber of weighted connections to other individual nodes and an input signal is 
propagated through the system until it emerges as a network output. An optimi- 
zation procedure that adjusts the weights connecting the nodes in order to 
minimize the difference between the output and the target (the desired result), 
is called the learning algorithm. Backpropagation [13] was the first practical 
method for training multilayer feedforward networks and is still the most popu- 
lar learning algorithm. 

Backpropagation 

The backpropagation algorithm is an example of supervised learning (train- 
ing with a teacher, that is, with known answers for representative examples). 
This algorithm adjusts the weights based on a gradient descent minimization of 
an error function (usually the sum of squared errors). A representation of a gen- 
eral architecture for a multilayer feedforward neural network trained with back- 
propagation was shown in Fig. 1. The goal is to 'teach' the networkto associate 
specific output to each of several inputs. Having learned the fundamental rela- 
tionship(s) between inputs and outputs, the neural network should then be able 
to produce reasonable output for unknown input (called generalization). The 
basic learning procedure can be summarized as follows: 

(1) Initialize the node connection weights w~j to some small random values. 
(2) Input some data Vi m and corresponding output values V~, where m is the 

layer number, i is the node number, and Trepresents the target or desired output 
state. 

(3) Propagate the initial signal forwards through the network using: 

NETj m : Ew~ Vi m - 1 + 13j and 

Vj m = F(NETj m) ( 1 ) 

where w~j is the connection weights between nodes i and j ,  V~ m-1 is the signal 
from node i and layer m - l ,  13 is the threshold or bias value of the node, and F 
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is a transfer function usually taken as a sigmoid function, most commonly the 
logistic function: 

F(NET~j ) : 1/I1 + exp(- NET~j )] (2) 

This function is continuous and varies monotonically from a lower bound of 0 
to an upper bound of 1. It has a continuous derivative (Eq. (4)) which is a re- 
quirement of the standard backpropagation algorithm. The feedforward propa- 
gation (Eq. (1)) is continued for each i and m until the final outputs Wi have all 
been calculated. 

(4) Compute the deltas (fi) for the output layer, defined as: 

8 ~ = -0E/NETi~ = - (OEI~3Vfl) (0Vfl/0NETfl) = 

= F(NETi ~ [Wi T-  WiG (3) 

where the error function E =  1/2 X (Vir-Vi~ 2 and F (NETi ~ is the derivative of 
the transfer function with respect to the activation NETi. For the logistic func- 
tion the derivative is: 

F(NETi ~ = c3F(NETP)/0NETfl = F(NETi ~ �9 [1 - F(NETi~ (4) 

where F(NE'IT) is given by Eq. (2). 
(5) Compute the deltas for the preceding layers by propagating the errors 

backward: 

8P -~ = F(NET~ -1) [Y- ~ 8~] (5) 

for all m = m ,  m-i ,  m-2, . . . ,  until it has been calculated for each layer. 
(6) Using: 

Al, l,,~j : q8 m ~j-'  (6) 

where q is the learning rate, update the connection weights to: 

W~t w = W~ ld + mwij (7) 

(7) Return to step (2) and repeat for another input example. 

This process (steps 1-7) is continued until the network output satisfies some 
ending criteria. In practice this type of iterative approach can often take a rela- 
tively large number of epochs (cycles through the whole data set) before a rea- 
sonable error is reached. Fortunately there are a number of methods which can 
help alleviate this pathology, although each modification comes with a number 
of new problems [14, 15]. For example, we have had good success with using 
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the Levenberg-Marquardt compromise to Newton's method for optimization 
problems [16]. This method basically interpolates between gradient descent and 
Gauss-Newton methods depending on the distance away from the minimum 
(gradient descent is used for minimizing the error for positions that are far away 
from a minimum and Gauss-Newton is used for those close to a minimum). 
This approach is quite practical since it is well-known that 2rid order or quasi- 
2nd order methods converge much faster than gradient descent close to a mini- 
mum (the error surface is quadratic: a well-defined Hessian matrix) but are 
slower when the error surface is not parabolic (far away from the minimum: the 
Hessian is not positive definite). Addition of a stochastic perturbation term to 
this method, much in the same spirit as Langevin dynamics, can also give im- 
proved performance (helps to escape from local minima in the hope of finding 
a global minima). 

One final note, rather using the standard backpropagation or one of its may 
variants, it is sometimes prudent to carry out all calculations in the complex do- 
main [17]. This type of approach is usually referred to as complex backpropa- 
gation and can actually lead to some surprising advantages. Training speed and 
reliability usually increase dramatically and generalization quality is almost al- 
ways superior. The implementation is a minor modification of Eqs (1-7) above: 
there will be a real part (Re) and an imaginary part (Im) to the input, output, 
bias, transfer function and connection weights. It is important to recall that ad- 
dition and multiplication in the complex domain are defined as: 
(a,b) + (c,d) = (a + c), (b + d); (a,b)*(c,d) = (ac-bd, ad+ bc). Otherwise the lear- 
ning algorithm does not change: the derivatives (now with two parts, Re and Im) 
with respect to the weights are used to optimize the same error function (also 
with Re and lm parts). Complex domain neural networks are appropriate pri- 
marily when the data intrinsically occurs in pairs of numbers. 

Kohonen self-organizing feature maps 

An algorithm called Kohonen self-organizing feature maps, developed by 
Kohonen [ 18] is an example of unsupervised competitive learning. Competitive 
learning uses a winner-take-all environment in which the output nodes of a net- 
work compete for being the one that fires. The goal is to cluster or categorize 
the input data: similar inputs should map onto similar outputs. The architecture 
of a general networks is defined as illustrated in Fig. 2. There are n-dimen- 
sional input vectors, each fully connected to a grid on nodes by a n-dimensional 
weight vector wij. The grid of nodes have lateral connections and define the to- 
pology of the output space. The algorithm used to train the network utilizes an 
Euclidean distance measure to determine which node has a weight vector that is 
closer to the input vector. The one with the closest value is the winning node. 
The weight of this node is adjusted as well as a neighborhood of nearest nodes. 
Thus the grid (it can also be a linear array, hexagonal array, or other geometric 
figures) is organized into local neighborhoods that act as feature classifiers of 
the input data. Basically, the Kohonen algorithm moves the weight vectors so 
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Fig. 2 An example of the general architecture of a Kohonen self-organizing feature map 

that it more closely aligns with the input vectors. Since both input and weight 
vectors are normalized to a unit magnitude (a requirement), the vectors point to 
a position on a unit hypersphere (or circle for two dimensions). Using this al- 
gorithm creates a mapping of multidimensional information onto a layer of 
nodes that preserves the essential content of the information (depending on the 
dimensionality of the input, it can also serve as a data compression method). 

Mathematically the algorithm represents a so-called Markov process (a set 
of states and a set of transition probabilities between states that determine a sto- 
chastic process which produces as sequence of states). The general algorithm 
can be defined as: 

(1) Initialize the weights w~j for defined network (usually a grid as shown in 
Fig. 2 or an array of nodes) to some small values: chose a subset of random 
numbers from a uniform random distribution between 0 and 1 that is centered 
at 0.5, 0.5 with a small width (0. I for example). 

J. Thermal Anal., 46, 1996 
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(2) Present an input vector, x(t). 
(3) Calculate the Euclidian distances between the input and all of the weights 

and select the node with the smallest distance, r*. 
(4) Update the weights for the winning node and its neighbors, defined by 

the neighbourhood size Ni(t): 

w~j(t + 1) = w~j(t) + rl(t) Nj(t) In(t) - wii(t)] (8) 

where 1"1 is the learning rate and decreases with time so that the weight adaption 
is reduced to zero and 

Ni(t ) : exp(- ]ri - r~ 12/202) (9) 

The neighborhood function, Nj(t), is shown here as a Gaussian with a width pa- 
rameter of o and a center determined by the winning node labeled r*. The width 
parameter is reduced during training to a final value of 1. One method for re- 
ducing the learnin)~ rate 11 and the Gaussian width parameter o is 
o(t+ 1)=[0. l/it(t)] (1), rl(t+ 1)=[0.1/q(t)] (1~), where K is the total number of 
anticipated cycles. 

(5) Return to 2 and repeat until all of the examples have been examined. 
(6) Go to 2 if convergence has not been achieved. 

Adaptive resonance theory 

Adaptive resonance neural networks are meant to model a self-organizing 
pattern recognition network capable of processing nonstationary data. There are 
a series of these networks proposed and develop by S. Grossberg and G. Car- 
penter [19-21] (ART1, ART2, ART3, fuzzy ART, ART2a, etc) that have the 
ability to switch modes between plastic (internal parameters can be modified) 
and stable (a fixed classification set), without loosing any result that had been 
previously learned (encoded). The architecture of an adaptive resonance net- 
work is one in which two layers are fully connected with adaptive weights 
between them that have both feedforward and feedback connections (Fig. 3). 
The layer at the bottom is the input layer (F 1 field) and the upper layer is the 
storage layer (F2 field). Each training pattern (ART is an unsupervised net- 
work) is presented to the network and causes an activity in the input layer. A 
transmission to every node in the top layer (bottom-up pattern) occurs, and the 
pattern is modified through the connections in the upper layer that stimulates a 
response pattern (top-down pattern). Since the two layers are fully connected, 
the top-down pattern is presented back to the input layer. If the pattern of activ- 
ity excited in the input layer nodes by the top-down input is a close match to the 
pattern excited in the input layer by external input, the system is said to be in 
adaptive resonance. Eventually, either the pattern is placed in an existing cate- 
gory or learned as the first example of a new category. 

J. Thermal Anal., 46, 1996 
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Fig. 3 Schematic of the architecture and learning algorithm for an ART2 neural network 

The ART algorithm is very good at cluster discovery. It has the novel ability 
to perform controlled discovery of clusters and can accommodate new clusters 
without affecting the storage or recall capabilities of the clusters already 
learned. The general algorithm is: 

(1) Initialize the weights (M output nodes and N input nodes): top-down and 
bottom-up. These weights define the exemplar specified by the output node. 

(2) Set the vigilance threshold p: this determines how close an input has to 
be to correctly match a stored exemplar. 

(3) Apply an input I. 
(4) Compute best matching clusterj (wij are bottom-up weights). 

~tj* = maxjp.j], where laj = Y- w ~j (t) li for 0 -<j _< M-1 

(5) Perform the similarity test for I and clusterj. 

~ v d , / I I  s II >r,, 

where 11 s I I = zI, and vii are ton-down weights. 

(6) If vigilance is passed go to 8 else to 7. 

(11) 
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(7) Disable the best match by setting the output of the best match node to 0, 
goto 4. 

(8) Update the weight matrices for index j: 

wij(t + 1) = vij(t)li/[0.5 § ~vlj(t)/i], vii(t + 1) = ~,livij(O (12) 

enable any disabled nodes, then go to step 3. 
The training algorithm for ART has a different learning philosophy than 

other neural network paradigms. The learning is optimized to enable the net- 
work to re-enter the training mode at any time in order to incorporate new 
training data. The network will continue to add new information, until it uses 
all of the available memory while refining stored information within it as new 
information is presented. The algorithm has been proven to be stable (no con- 
vergence problems as in backpropagation). Although there are questions 
concerning its stability to noisy input conditions (especially for ART1), latter 
versions have been substantially improved (Fuzzy ART) [20]. In addition, 
Fuzzy ARTMAP [21], an incremental supervised version of Fuzzy ART, is ca- 
pable of performing very efficient and accurate classifications. 

B. Numerical representation of molecular structure 

A given molecular structure for a repeat unit of a particular polymer, Kapton 
as shown in Fig. 4, is transformed into a set of numerical descriptors using 
methods founded in graph theory and/or chemical nomenclature. Initially a 
large number of structural descriptors useful for characterizing molecular struc- 
ture were examined in order to quantify which were the most optimal. These 
included the standard connectivity matrices/indices, Wiener numbers, path 
numbers, graph polynomials, weighted paths, and various combinations (over 
100 different types) [22-25]. To facilitate the determination of the best repre- 
sentation of the fundamental structure of polymers, we have used unsupervised 
neural networks. In this approach, the neural network formulates clusters of 
data that is statistically similar. If the data for a set of 11 different families of 
polymers (polyolefins, polyoxides, polhhalo-olefins, polyvinyls, polystyrenes, 
polyacrylates, polymethacrylates, polyacrylics, polydienes, polyesters, polycar- 
bonates) is used as input to the self-organizing feature map or adaptive 
resonance theory networks, the final 'converged' resultshould indicate how 
many structurally different families are present. For the purpose of accurately 
predicting polymer properties, the use of the descriptors defined by a combina- 
tion of molecular connectivity indices [25], chemical composition, and 
standard IUPAC nomenclature for naming compounds, was determined to pro- 
vide optimal results (ART2 found 11 different clusters). Alternatively, the same 
descriptors could have each been used to train a supervised neural network by 
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simply testing each possible combination (a heuristic-brute force method). Ge- 
netic algorithms [26, 27] or other combinatorial optimization methods can also 
be effectively used to sort out the best representation. In this case the basis for 
selecting a particular set of descriptors depends on optimizing the performance 
of a neural network to predict the properties (if the particular combination of 
descriptors is a bad representation, the neural network should not be able to 
form any reasonable correlations to the properties: as in the heuristic-brute 
force method). We tried all of these approaches and found the same answer, 
however the unsupervised methods were by far the easiest and fastest method to 
employ. The optimal descriptors discovered are based on topological indices ob- 
tained by using graph theory, and reflect both topological connectivity, 
information on the electronic structure, chemical composition, and bulk orien- 
tation. In addition, the overall scheme takes into account properties that depend 
on the amount of material present, called extrinsic and those which do not, 
called intrinsic [7]. 

The appropriate 'molecular' indices are used as input to a set of neural net- 
works which then utilize this information to correlate the fundamental structure 
to a set of polymer properties (Fig. 4). Figure 4 features the multiple 'local ex- 
pert' or modular approach to neural network computing. That is each property 
of interest is correlated to the structural representation by using individual neu- 

t 

E t --0 --~ N N ' ~  

[GRAPH THEORY I 
! 

N oxv iXv 2%v ox :X z X . . .  Ee &Hf 

! t 

DESCRIPTOR 

ORNL DWG 95A-221 

! 

NEURAL NETWORK MODULES 

t 

Fig. 4 Schematic of the modular neural network approach to predicting polymer properties 
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ral networks (9 properties = = > 9 neural networks; the local experts). This ac- 
tually allows a better prediction of the properties since each network is 
optimized on only one output variable (a divide and conquer strategy), plus it 
allows for the fact that the same amount of data for each property is not gener- 
ally available. A global prediction, is of course possible (all properties using 
one network), and has been presented for some polymer properties in our pre- 
vious work [12]. 

Results and discussion 

Several computational experiments were conducted. First, an attempt was 
made to use a CNN to correlate the molecular indices to the parameters of the 
Tarasov function for heat capacity. If this correlation could be made, then the 
prediction of heat capacity at any temperature could be made using the Tarasov 
equation [28] which is already set up as part of the ATHAS data bank [29]. This 
would be a significant improvement since there are a large numberof polymers 
for which the information required to formulate the parameters is not readily 
available and is generally obtained by the trial and error inversion of heat ca- 
pacities to the approximate vibrational spectrum (a tedious and perhaps 
inaccurate procedure). Previous work demonstrated that the Tarasov function 
could be inverted using a neural network to obtain the two parameters (|174 
for the skeletal vibrations of 36 macromolecules [30]. However this approach 
explicitly assumes that the heat capacity of polymers is indeed described by the 
Tarasov function. Wunderlich and co-workers have persuasively demonstrated 
that the Tarasov function is a reasonable model of the temperature dependence 
of the heat capacity over a certain temperature range, above which, some devia- 
tion is found (presumably due to the anharmonic contribution of conformational 
disorder). Thus it could be argued that obtaining the best parameters for the 
Tarasov function is a logical approach toward generalizing the computation of 
heat capacities for polymers. In any case, this approach requires the existence 
or measurement of heat capacity of the skeletal vibration (which implies that 
there is linear separability of the heat capacity into the skeletal and group vibra- 
tional contributions) as a function of temperature. A more atomistic approach 
would be to predict the values of |174 directly from the composition and struc- 
ture of the polymer. It is clear that structure (electronic and geometric) and the 
atomic composition of molecules dictate the behavior of the vibrational modes. 
Thus it is reasonable to expect that, if the vibrational spectrum can be predicted 
based on structure/composition information, the parameters of the Tarasov 
function could also be predicted equally well (of course this assumes that 
| which define 1 and 3-dimensional Debye functions, are representative of 
the vibrational spectrum). A CNN was presented structural information on a se- 
ries of 53 different polymers for which optimal values of |174 were available 
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(from the ATHAS data bank). Backpropagation using the Levenberg-Marquardt 
method for optimization was used to train the network architecture (number of 
hidden layer nodes) which was automatically determined using complexity 
regulation. The training was terminated based on cross-validation (minimum 
obtainable error as monitored on a test set not the training set). In addition, an 
ensemble average of 50 different training and test sets were obtained using the 
bootstrap resampling technique (random sampling with replacement) [31]. This 
procedure nearly or completely eliminates any accidental bias used in selecting 
the division of the data into training and testing sets and in judgeing the overall 
performance of the neural networks' prediction capabilities. The resulting net- 
work gave an average prediction error of 9% for | with a standard deviation of 
50 ~ and 14% with a standard deviation of 13 ~ for | somewhat disappointing 
considering the success of previous neural network studies. The best explana- 
tion that we can give for this behaviour is that there simply isn't any strong 
correlation possible between fundamental structure (electronic and geometric) 
and composition to the parameters of the Tarasov equation. Of course this state- 
ment assumes that we have accurately represented the structure and that a 
neural network is capable of forming nonlinear correlations. The latter condi- 
tion is well-known to be true: neural networks are universal approximates (they 
can approximate any function). The representation that we have used has been 
well tested for the prediction of numerous properties for polymeric compounds 
(as is shown below) and was chosen using unsupervised neural networks (an un- 
biased technique). In addition, to be certain that there wasn't something subtle 
in the representation, we tested a number of other graph theoretic repre- 
sentations which prove reasonable descriptions for structure (including 
representations of the monomer, dimer, and trimer units of the parent polymer: 
giving a total of 296 different representations). No improvement in accuracy 
was found (of course this is of no suprise since the representation was opti- 
mized, as described in section liB, based on a similar set of possible 
descriptors). 

The approach that we have found the most profitable is to directly predict 
polymer properties (thermal and mechanical) from the structural repre- 
sentation. Table 1 illustrates the accuracies of this neural network approach and 
shows a comparison to that obtained from some statistical regression techniques 
[linear, polynomial, and spline partial least squares regression (PLS, PPLS, 
SPLS) [32-34], locally weighted [35], ridge [36], and kernel regression [37] 
(LWR, RR, KR)]. In all cases, cross-validation was used to determine the opti- 
mal parameters for the various forms of regression (the number of latent 
variables, the number of points to use in the locally weighted regression, the 
best values for the regression parameter theta in ridge regression, the degree of 
the polynomial used in polynomial and spline partial least squares, the width of 
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the local basis functions used in KR). One note should be called to attention. 
Most of these statistical methods all assume that the data being examined can be 
fit to an underlying model: for PLS and RR this model is linear, for PPLS it is 
polynomial [the degree is specified] and LWR is linear or quadratic. Kernel re- 
gression is general in theory since it uses local basis sets (usually Gaussian 
kernels) optimized to determine the probability density function directly from 
the data. 

The error measures given in Table 1 are defined as follows: Er~duat = 

I T-PI, where T is the known answer and P is the prediction; <%error>= 
Y Er~idu~l/T" 100, correlation = [Z(Ti-<T>)(Pi-<P>]/[q'-(Ti-<T>) 2 ~-(Oi-<O>)2], 

2 2 std(residual) = ~ [ < E ~ > - <  Er~idu,~> ~N-l]. Table 1 indicates that the neural 
network prediction of the thermal and mechanical properties achieves a better 
accuracy than any of the statistical methods. Since the structure-property rela- 
tionships are most likely nonlinear in multiple variables, it is clear that the 
linear models of PLS and RR will have less of a chance of accurately predicting 
new results. While PPLS and LWR share the relative computational simplicity 
of PLS, it is possible that as a soft-modeling technique, their use of simple poly- 
nomial expansions to describe complex, nonlinear response surfaces, may still 
not be optimal. A more recent version of nonlinear PLS uses a splined inner re- 

Table 1 Predictions of various thermal and mechanical properties for polymeric materials using 
neural networks and statistical regression techniques* 

Predicting C v [Property range: 38--850 J mol -I K-I; 170 examples] 

Method < %Error > Correlation Std(residual) 

FNN 1.9 0.997 5 J mo1-1 K -1 

PLS 6.0 0.980 11 J mol -I K -l 

LWR 2.5 0.989 10 J mol -I K -l 

RR 6.1 0.900 11 J mol -l K -l 

PPLS 4.9 0.987 10 J mol -l K "1 

KR 4.9 0.987 10 J mol -l K < 

Predicting ACp [Property range: 9-177 J mo1-1 K -1; 56 examples] 

Method < % Error > Correlation Std(residual) 

FNN 3.7 0.98 3.0 J mol -z K -2 

PLS 12 0.92 4.3 J mo1-1 K -1 

LWR 6.5 0.92 6.0 J mo1-1 K -l 

RR 12 0.93 4.4 J mol -l K -l 

PPLS 10 0.94 4.0 J mo1-1 K -1 

KR 11 0.62 22.0 J mol -l K -~ 
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Predicting Tm [Property range: 230-66 K; 56 examples] 

Method < % Error > Correlation Std(residual) 

FNN 4 0.98 21 ~ 

PLS 9 0.95 26 ~ 

LWR 7 0.96 24 ~ 

RR 9 0.95 26 ~ 

PPLS 11 0.94 30 ~ 

KR 5 0.95 40 ~ 

Predicting Tg [Property range: 130-68 K; 320 examples] 

Method < % Error  > Correlation Std(residual) 

FNN 6 0.99 7 ~ 

PLS 14 0.90 30 ~ 

LWR 12 0.80 50 ~ 

RR 14 0.90 30 ~ 

PPLS 11 0.93 27 ~ 

NPLS 11 0.82 15 ~ 

Predicting Tag [Property range: 321--47 K; 24 examples] 

Method < % Error > Correlation Std(residual) 

FNN 9 0.93 9 ~ 

PLS 41 0.30 21 ~ 

LWR 16 0.69 19 ~ 

RR 40 0.23 25 ~ 

PPLS 19 0.73 14 ~ 

KR 11 0.82 15 ~ 

Predicting Tensile Strength [Property range: 100-900 kg em-Z; 24 examples] 

Method < % Error > Correlation Std(residual) 

FNN 13 0.90 40 kg em -z 

PLS 34 0.28 116 kg em -z 

LWR 32 0.45 205 kg em -2 

RR 33 0.27 112 kg cm -2 

PPLS 34 0.31 86 kg cm -2 

KR 23 0.51 113 kg em -2 
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Predicting Tensile Modulus [Property range: 1800-36000 kg cm-Z; 24 examples] 

Method < % Error > Correlation Std(residual) 

FNN 6.8 0.95 951 kg cm -2 

PLS 38 0.18 6000 kg cm -2 

LWR 25 0.37 5716 kg em -2 

RR 36 0.14 5745 kg em -2 

PPLS 26 0.48 3709 kg cm -2 

KR 19 0.48 5018 kg cm -z 

Predicting Compressive Strength [Property range: 60-2000 kg em-2; 24 examples] 

Method < % Error > Correlation Std(residual) 

FNN 8 0.92 50 kg em -2 

PLS 34 0.32 182 kg cm -2 

LWR 23 0.58 198 kg em -2 

RR 31 0~'31 177 kg em -2 

PPLS 38 0.50 151 kg em -2 

KR 17 0.56 149 kg cm -2 

Predicting Ultimate Elongation [Property range: 2-750%; 24 examples] 

Method < % Error > Ccorrelation Std(residual) 

FNN 12 0.90 15% 

PLS 27 0.63 38 % 

LWR 17 0.76 33 % 

RR 27 0.63 39 % 

PPLS 26 0.66 29 % 

KR 19 0.62 51% 

* Definition of the abbreviations used in the table: 
FNN: Feedforward neural networks trained with backpropagation 
PLS: Linear partial least squares regression 
LWR: Locally weighted regression (a nonlinear regression technique) 
RR: Ridge regression (linear technique) 
PPLS: Polynomial partial least squares regression 
KR: Kernel Regression 

lation (with user specified knots), which in principle should be able to model 
more complex relationships. We have also used the spline-PLS (SPLS) on the 
problems in Table 1. No notable improvement over PPLS was obtained (not 
shown in the Table 1). Obviously either the amount of data used was not suffi- 
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cient for the statistical techniques to determine an optimal regression vector or 
the correlation between the input and output is more complicated than any lin- 
ear or simple polynomial functions can to accurately describe (KR however 
should be able to fit any relationship). The power of the neural network ap- 
proach is that it is model free. The best set  of 'functions' is determined 
automatically from the data, independent of the complexity of this function. 
Furthermore, it appears that the very things (such as sparse data, outliers, mul- 
timodal distributions, fuzzyness) that can cause some of the traditional methods 
to fail or significantly degrade, are not such an issue for neural networks (at 
least in this study). One issue of course is the computational time and difficulty 
in successfully using the various methods. All methods were computational ef- 
ficient for this problem, requiring only a few CPU seconds, or at most, minutes 
on an IBM RISC 6000/580 to obtain the results (this includes training for the 
neural network)i It is difficult to be unbiased in the degree of difficulty in using 
the various methods. So we won't comment on this other than to say that cross- 
validation and bootstrap resampling [31] was used for each method to determine 
training/test sets of data, adjustable parameters, and end conditions. All of these 
methods provide useful soft-modeling capabilities and should in general be used 
in a complimentary manner (the statistical techniques can provide information 
of how the problem is solved). In any case, the results obtained from the neural 
network are the most satisfactory and clearly demonstrate that predictions of 
polymer properties are possible. Although no attempt was made to predict the 
temperature dependence of the properties, it is clear that neural networks are 
capable of formulating such correlations based on previous work for heat capac- 
ity predictions [371. 

An improvement is possible in the prediction of mechanical properties. 
Since the measurement of tensile and compressive strengths and moduli is 
strongly dependent on the sample itself (as well as other variables such as hu- 
midity etc), data is usually reported within a range (lower and upper bounds). 
Assigning a fixed value for the tensile strength forces the neural network to de- 
termine specific correlations to that value. A better approach, not considering 
adaptive fuzzy systems (which actually works very well), would be to give the 
information on the bounds of the individual properties to the neural network. In 
this manner, even though the structural representation is constant, the correla- 
tions that are formulated by the neural network should better take into account 
the variability of the data. One way to present data that have two variables per 
observation is to use complex domain neural networks. Thus, a neural network 
is simply presented with the same structure representation, but the training and 
the output are carried out using complex numbers. The results for the prediction 
of mechanical properties showed an notable improvement: average absolute er- 
ror decreased by 3%. Thus the overall approach to predicting properties of 
polymeric materials based on structural representations appears to work very 
well for many different properties. 
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C o n c l u s i o n s  

A computational methodology has been discussed for making accurate pre- 
dictions of polymer properties based on their molecular structure. Results of 
this paper demonstrate that the accuracy is reasonable for a number of thermal 
and mechanical properties. Extension to more specific problems such as pre- 
dicting heat capacity as a function of temperature should be relatively straight 
forward, thus representing a powerful method in the refinement and extension 
of data from thermal mechanical analysis. 
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